RAIO RA8870

文字 / 图形

TFT LCD 控制器

基本规格书

Version 1.1

February 7, 2013

RAiO Technology Inc.

©Copyright RAiO Technology Inc, 2010, 2011, 2012, 2013

1. 简介

RA8870 是一个文字与绘图模式的液晶显示(TFT-LCD)控制器,可结合文字或 2D 图形应用,支持最大到 640*480 点分辨率的中小尺寸数字或模拟 TFT 屏。RA8870 内建内存能支持 65K 色的 320*240 单图层显示; 4K 色的 320*240 双图层显示; 或者是 4K 色的 320*480、640*240 的单图层显示,若外接内存最高可支持到 65K 色的 640*480 单图层显示。

RA8870 内建 CGROM 能显示国际标准的 ISO 8859-1/2/3/4 字型,包含 256*4 个可显示大部份使用于英语系和欧洲国家的半型字字母及符号。在图形的使用上,RA8870 支援一 2D 的 BTE 引擎(Block Transfer Engine),此 BTE 兼容于一般通用的 2D BitBLT 的功能,可用于处理大量图形数据转换。同时 RA8870 也内建几何图形加速引擎(Geometric Speed-up Engine),提供用户可以透过简单的设定轻松的画出直线、矩形和圆形的几何图形形状。除此之外,RA8870 还包括一些强大的图形处理功能,如画面旋转功能、卷动功能、图形 Pattern、双层混合显示和文字放大等等,这些功能将可节省用户在中小尺寸 TFT 屏应用的开发时间,并且提升 MCU 软件的执行效率。

RA8870 提供低成本的 8-bit 或 16-bit 8080 / 6800 MCU 界面,还有一 10-bit 的 4 线或 5 线式触摸屏控制器,另外 2 组的脉宽调制(PWM)可用于调整 TFT 屏背光或其它应用。相对于其它的解决方案,RA8870 是一个功能强大和廉价的彩色 TFT 控制器,可以让以往单色 STN 屏的应用顺利、快速、轻易的转成 TFT 屏的应用,解决设计者在软硬件开发上的疑虑,同时达成低成本、高效能的系统方案。

2. 特性

- ◆ 支持文字和绘图两种混和显示模式
- ◆ 时钟(Clock)来源:外部晶振配合内部PLL
- ◆ 色彩深度: 256/4K/65K 色
- ◆ 支援 MCU 界面: 8-bit 或 16-bit 数据总线的 8080/6800 系列
- ◆ 内建 DDRAM 内存: 230KB
- ◆ 内建 10KB 字型 ROM (8*16 dots) 及支持标准 ISO8859-1/2/3/4
- ◆ 支持 GB-2312 及 BIG-5 编码的外部 16*16 dots 字型 ROM
- ◆ 外部 DDRAM 最大可支持到 512KB*16
- ◆ 支持 1 倍到 4 倍字型放大(垂直和水平)
- ◆ 支持 8/12/16-bit Generic RGB TFT 界面或模 拟 TFT 屏界面。
- ◆ 内建 TCON 可支持大部分模拟屏
- ◆ 支持90度、180度、270度文字旋转显示功能
- ◆ 文字垂直旋转模式功能

- ◆ 支持水平和垂直区域卷动
- ◆ 内建 2D Block Transfer Engine (BTE) 功能
- ◆ 内建几何图形加速绘图引擎
- ◆ 提供文字光标功能
- ◆ 提供 32*32 pixel 的图形光标功能
- ◆ 支援 TFT 屏大小:双图层:最大 320*240 点分辨率(使用内建内存)

单图层: 最大 640*480 点分辨率

- ◆ 支持 256 个用户自订 8*16 字符符号
- ◆ 支持 32 个用户自建 8*8 pixel 图形 Pattern
- ◆ 内建 2 组脉冲宽度调制 (PWM) 提供 LCD 背 光的调节或其它用途
- ◆ 内建4或5线电阻式触摸屏控制器
- ◆ 提供 6 个 GPIO (GPIO0~5)
- ◆ 电源操作范围: 3.0V~3.6V
- ◆ 封装: TQFP-128pin.

3. 系统方块图

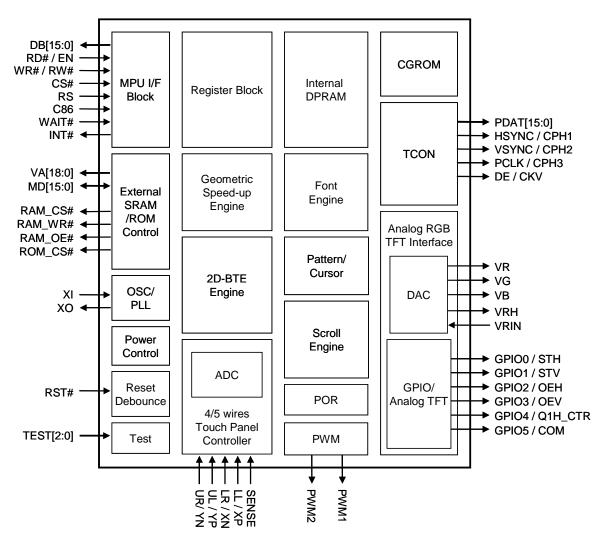


图 3-1: 内部方块图

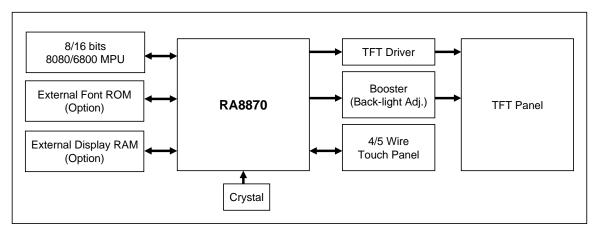


图 3-2: 系统方块图

4. 管脚定义

4-1 MCU界面

管 脚 名 称	I/O	Pin#		~	からない かくしょう かいまた かいまた かいまた かいまた かいまた かいまた かいまた かいまた	
		109,	数据总线(Data B	us)		
DB[15:0]	10	110, 114~ 127	│ 负责 RA8870 及微	处理器(MC	CU)之间的数据传送与接收。	
	10		当于使用 8-bit 数:	居总线模式	下, DB[15:8] 当保持当保持接下	拉/上拉
			电阻到 GND 或 VD	D.		
			致能 / 读取控制信	号(Enable	e / Read Enable)	
RD# / EN	١,	104	当 MCU 为 8080 系	≶列时,此 脚	〕为数据读取信号(RD#),于值	氏电位动
ND#/ EN	'		作。			
			当 MCU 为 6800 豸	≶列时,此 脚	为致能信号(EN),于高电位:	动作。
			写入 / 读-写控制信	号(Write	/ Read-Write)	
			当 MCU 为 8080 系	≶列时,此脚	为数据写入信号(WR#),于值	氐电位动
WR# / RW#	ı	105	作。			
			当 MCU 为 6800 矛	≶列时,此脚	为数据读取 / 写入信号 (RW#)),于高
			电位时表示读取动	作,于低电位	立时表示写入动作。	
CS#	ı	106	芯片选取控制信号	(Chip Sele	ect Input)	
			Low 动作的芯片选	取输入。		
			指令 / 数据选择控	制信号(Co	ommand / Data Select Input)	
					期或数据周期。当 RS = 0 时,R	
			数据读取或写入周期。当 RS = 1 时,RA8870 为状态(Status)读取或指令写入周期,当于 8080 接口时,通常此管脚和微处理器的 A0 相接。			
			指令与人向期,当	ナ 8080 接口	1时,	AU 相接。
RS	I	107	RS	WR#	存取周期	
			0	0	数据写入(Data Write)	
			0	1	数据读取(Data Read)	
			1	0	指令写入(CMD Write)	
			1	1	状态读取(Status Read)	
			MCU 界面选择			
C86	ı	108	0 : Intel 8080 系列 MCU 接口。			
			1 : Motorola 6800	系列 MCU 括	妾口。	
INT#	0	11	中断信号(Interru	pt Signal O	output)	
	Ŭ	用以发出 RA8870 内部的中断状况给 MCU。				
	0	10	等待信号(Wait S	ignal Outpu	ut)	
WAIT#			用以反应 RA8870	内部的执行	产使用状况。当 WAIT# 为 Low	时表示
			RA8870 正处于忙	录状态, 无法	接受来自 MCU 指令。把此管脚	接到 I/O
			管脚时,它能被使	用于轮询机制	制(Polling)来监控内部的状况	0

4-2 LCD屏界面

管脚名称	I/O	Pin#	管 脚 说 明
PDAT[15:0]	0	78~93	LCD 屏数据总线 数据总线输出端接到 TFT LCD 屏的 Driver IC。用户必须将这些数据总 线接到对应的 TFT LCD 屏的相对信号。
HSYNC / CPH1	0	74	HSYNC Pulse / CPH1 当使用 Generic TFT(数字 TFT 屏)时,此管脚定义为 HSYNC。 当使用模拟 TFT 时,此管脚定义为 CPH1。
VSYNC / CPH2	0	75	VSYNC Pulse / CPH2 当使用 Generic TFT 时,此管脚定义为 VSYNC。 当使用模拟 TFT 时,此管脚定义为 CPH2。
PCLK / CPH3	0	76	Pixel Clock / CPH3 当使用 Generic TFT 时,此管脚定义为 PCLK。 当使用模拟 TFT 时,此管脚定义为 CPH3。
DE / CKV	0	77	Data Enable / CKV 当使用 Generic TFT 时,此管脚定义为 DE。 当使用模拟 TFT 时,此管脚定义为 CKV。
GPIO0 / STH	Ю	58	通用 GPIO 信号 0 / STH 当使用 Generic TFT 时,此管脚定义为一通用 GPIO 信号(GPIO_0), 用户可由寄存器设定之。 当使用模拟 TFT 时,此管脚定义为 STH。
GPIO1 / STV	Ю	59	通用 GPIO 信号 1 / STV 当使用 Generic TFT 时,此管脚定义为一通用 GPIO 信号(GPIO_1)。 当使用模拟 TFT 时,此管脚定义为 STV。
GPIO2 / OEH	Ю	60	通用 GPIO 信号 2 / OEH 当使用 Generic TFT 时,此管脚定义为一通用 GPIO 信号(GPIO_2)。 当使用模拟 TFT 时,此管脚定义为 OEH。
GPIO3 / OEV	Ю	61	通用 GPIO 信号 3 / OEV 当使用 Generic TFT 时,此管脚定义为一通用 GPIO 信号(GPIO_3)。 当使用模拟 TFT 时,此管脚定义为 OEV。
GPIO4 / Q1H_CTR	Ю	62	通用 GPIO 信号 4 / Q1H_CTR 当使用 Generic TFT 时,此管脚定义为一通用 GPIO 信号(GPIO_4)。 当使用模拟 TFT 时,此管脚定义为 Q1H_CTR,用来控制 Q1H。

管脚名称	I/O	Pin#	管 脚 说 明
GPIO5 / COM		63	通用 GPIO 信号 5 / COM
	Ю		当使用 Generic TFT 时,此管脚定义为一通用 GPIO 信号(GPIO_5)。
			当使用模拟 TFT 时,此管脚定义为 COM,用来控制 VCOM。
VR	0	69	模拟 Red 输出
			此信号接到模拟 TFT 屏的驱动器 Red Data 输入端。
VG	0	68	模拟 Green 输出
VG			此信号接到模拟 TFT 屏的驱动器 Green Data 输入端。
VB	0	67	模拟 Blue 输出
			此信号接到模拟 TFT 屏的驱动器 Blue Data 输入端。

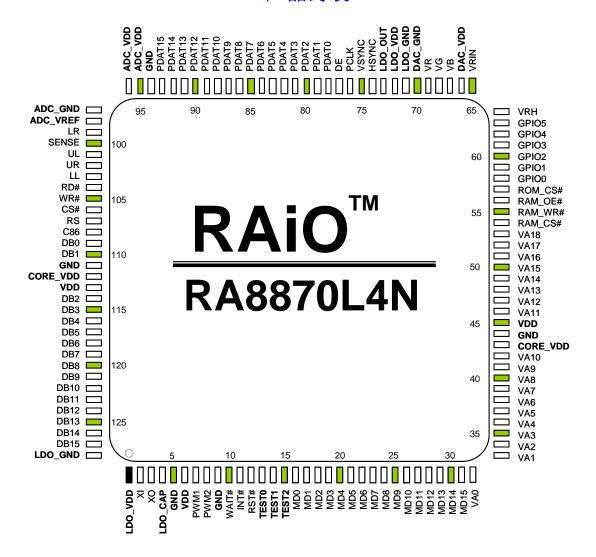
4-3 触摸屏与脉宽调制界面

管脚名称	I/O	Pin#	管 脚 说 明
UR / YN	Α	102	触摸屏控制信号
			当使用 5 线式触摸屏,此管脚定义为 UR 输出信号。
			当使用 4 线式触摸屏,此管脚定义为 YN 信号。
	Α	101	触摸屏控制信号
UL/YP			当使用 5 线式触摸屏,此管脚定义为 UL 输出信号。
OL/ IP			当使用 4 线式触摸屏,此管脚定义为 YP 信号。
			当使用触摸屏扫瞄功能时,请在此脚位外接 100Kohm pull-up 电阻。
	А	99	触摸屏控制信号
LR / XN			当使用 5 线式触摸屏,此管脚定义为 LR 输出信号。
			当使用 4 线式触摸屏,此管脚定义为 XN 信号。
	А	103	触摸屏控制信号
LL / XP			当使用 5 线式触摸屏,此管脚定义为 LL 输出信号。
			当使用 4 线式触摸屏,此管脚定义为 XP 信号。
	А	100	5 线式触摸屏 SENSE 信号
SENSE			当使用 5 线式触摸屏,此管脚定义为 SENSE 输入信号。
			当使用 4 线式触摸屏, 此管脚保持浮接。
PWM1	0	7, 8	PWM 输出
PWM2			PWM 输出,可由寄存器进行程序化输出。

4-4 外部内存界面

管脚名称	I/O	Pin#	管 脚 说 明
		32~42, 46~53	外部 RAM / ROM 地址总线(Address Bus)
			当使用外部 Font ROM, VA[18:0] 接到 512KB Font ROM 的地址总线。
VA[18:0]	0		当使用外部 DDRAM(Display RAM), VA[18:0] 接到 RAM 的地址总线。
			当使用内部 Display RAM 且不使用外部 Font ROM, VA[18:0] 地址总线
			请保持浮接。
		16~31	外部 RAM / ROM 数据总线(Data Bus)
			当使用外部 Font ROM, MD[7:0] 为输入信号, MD[15:8] 不被使用。
MD[15:0]	Ю		当使用外部 DDRAM,MD[15:0] 接到 RAM 的数据总线。
			当使用内部 Display RAM 且不使用外部 Font ROM, MD[15:0] 数据总
			线建议接到 VDD 以避免 IO 耗电。
RAM_OE#	0	56	RAM 输出致能信号
TAM_OL#			接到外部 DDRAM 的 Data Output Enable 信号。
RAM_WR#	0	55	RAM 写入致能信号
IVAIN_VVIV#			接到外部 DDRAM 的 Write 信号。
RAM_CS#	0	54	RAM 芯片选择信号(Chip Select)
INAM_00#			接到外部 DDRAM 的 Chip Select 信号。
ROM_CS#	0	57	ROM 芯片选择信号
KOWI_C3#			接到外部 Font ROM 的 Chip Select 信号。

4-5 时钟与电源


管脚名称	I/O	Pin#	管 脚 说 明	
ΧI	ı	2	Crystal 输入管脚 此为晶体振荡器的输入端,用来提供内部 PLL 的振荡来源,以便产生 RA8870 的内部时钟(Clock)信号。	
хо	0	3	Crystal 输出管脚 此为晶体振荡器的输出端。	
RST#	I	12	复位信号(Reset Signal Input) 此管脚为 RA8870 低电位硬件复位输入信号。为了提高抗杂讯的能力, 此管脚为 Schmitt-Trigger 输入,当所给的电源准位变低时,能确保此 管脚不会被触发。	
TEST[2:0]	I	13~15	测试模式输入信号(Test Mode Input) 此管脚为测试信号,必须保持接地(GND)。	
VRIN	Α	65	DAC 参考电压输入 此脚为一参考电压的稳压输入,用来产生 VRH 信号。实际应用外接 0.1uF 的电容到地即可。	

			DAC 参考电压输出
VRH	Α	64	此脚为内部 DAC 的参考电压输出。实际应用外接 0.2uF 的电容到地即
			可。
			ADC 参考电压
ADC_VREF	Α	98	ADC 的输入参考电压,可以选择内部产生,或是由外部输入。此管脚
			必须接一 1~10uF 电容到地(GND)以提升 ADC 转换的稳定度。
		6, 45, 113	I/O 的 VDD 电源信号
VDD	Р		VDD 为 3.3V 输入。
			LDO VDD
LDO_VDD	Р	1, 72,	内部 LDO(Low Dropout Regulator)的电源(3.3V)输入,用以产生
			1.8V 电源输出。
100 000	7	71,	LDO GND
LDO_GND	Р	128	LDO 的接地线。
L DO OUT		73	LDO 电压输出
LDO_OUT	Р		LDO 1.8V 电源输出,于靠近输出端处接一电容到地以提升滤波效果。
100.040)	4	LDO 的滤波电容接点
LDO_CAP	Р		必须接一 1uF 以上的滤波电容到地以减少杂讯干扰。
		43, 112	内核电路的 VDD 电源
CORE_VDD	Р		内部核心电路的 VDD 电源为 1.8V,请接到 LDO_OUT,并于靠近输入
			端处接一 1uF 以上的滤波电容到地以减少杂讯干扰。
	Р	95,	ADC VDD
ADC_VDD		96	内部 ADC 电源(3.3V)输入。请将此信号接至 3.3V。
	_	97	ADC GND
ADC_GND	Р		内部 ADC 的接地线。请将此信号接地。
DAG 1/DD	_	66	DAC VDD
DAC_VDD	Р		内部 DAC 电源(3.3V)输入。请将此信号接至 3.3V。
DAC_GND	_	70	DAC GND
	Р		内部 DAC 的接地线。请将此信号接地。
GND		5, 9, 44, 94, 111	
	P		GND
			内核电路及 IO 的接地线。

5. 产品封装

