Dual monostable multivibrator Rev. 06 — 27 November 2009

Product data sheet

1. **General description**

The HEF4528B is a dual retriggerable-resettable monostable multivibrator. Each multivibrator has an active LOW input ($n\bar{A}$), and active HIGH input ($n\bar{B}$), an active LOW clear direct input (n \overline{CD}), an output (nQ) and its complement (n \overline{Q}), and two external timing component connecting pins (nCEXT, always connected to ground, and nREXT/CEXT).

An external timing capacitor (CEXT) must be connected between nCEXT and nREXT/CEXT and an external resistor (R_{EXT}) must be connected between nREXT/CEXT and V_{DD}. The output pulse duration is determined by the external timing components CEXT and REXT. A HIGH-to-LOW transition on nA when nB is LOW or a LOW-to-HIGH transition on nB when $n\overline{A}$ is HIGH produces a positive pulse (LOW-HIGH-LOW) on nQ and a negative pulse (HIGH-LOW-HIGH) on nQ if the nCD is HIGH. A LOW on nCD forces nQ LOW, nQ HIGH and inhibits any further pulses until $n\overline{CD}$ is HIGH.

It operates over a recommended V_{DD} power supply range of 3 V to 15 V referenced to V_{SS} (usually ground). Unused inputs must be connected to V_{DD} , V_{SS} , or another input. It is also suitable for use over the full industrial (-40 °C to +85 °C) temperature range.

2. Features

- Fully static operation
- 5 V, 10 V, and 15 V parametric ratings
- Standardized symmetrical output characteristics
- Operates across the full industrial temperature range -40 °C to +85 °C
- Complies with JEDEC standard JESD 13-B

Applications 3.

Industrial

Ordering information 4.

Table 1. **Ordering information**

All types operate from -40 °C to +85 °C.

Type number	Package		
	Name	Description	Version
HEF4528BP	DIP16	plastic dual in-line package; 16 leads (300 mil)	SOT38-4
HEF4528BT	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-1

Dual monostable multivibrator

5. Functional diagram

HEF4528B_6

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 2. Pin description		
Symbol	Pin	Description
1CEXT, 2CEXT	1, 15	external capacitor connection (always connected to ground)
1REXT/CEXT, 2REXT/CEXT	2, 14	external capacitor/resistor connection
$1\overline{CD}, 2\overline{CD}$	3, 13	clear direct input (active LOW)
1B, 2B	4, 12	input (LOW-to-HIGH triggered)
1Ā, 2Ā	5, 11	input (HIGH-to-LOW triggered)
1Q, 2Q	6, 10	output
$1\overline{Q}, 2\overline{Q}$	7, 9	complementary output (active LOW)
V _{SS}	8	ground supply voltage
V _{DD}	16	supply voltage

HEF4528B_6

7. Functional description

Table 3.	Function table ^[1]								
Inputs			Outputs	Outputs					
Ā	В	CD	Q	Q					
\downarrow	L	Н	Л	T					
Н	\uparrow	Н	Л	Ţ					
Х	Х	L	L	Н					

[1] H = HIGH voltage level; L = LOW voltage level; X = don't care;

 \uparrow = positive-going transition; \downarrow = negative-going transition;

 \square = one HIGH level output pulse, with the pule width determined by C_{EXT} and R_{EXT};

 \Box = one LOW level output pulse, with the pulse width determined by C_{EXT} and R_{EXT}.

8. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to V_{SS} = 0 V (ground).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{DD}	supply voltage		-0.5	+18	V
I _{IK}	input clamping current	$V_{\rm I}$ < –0.5 V or $V_{\rm I}$ > $V_{\rm DD}$ + 0.5 V	-	±10	mA
VI	input voltage		-0.5	V _{DD} + 0.5	V
I _{OK}	output clamping current	$V_{\rm I}$ < –0.5 V or $V_{\rm I}$ > $V_{\rm DD}$ + 0.5 V	-	±10	mA
I _{I/O}	input/output current		-	±10	mA
I _{DD}	supply current		-	50	mA
T _{stg}	storage temperature		-65	+150	°C
T _{amb}	ambient temperature		-40	+85	°C
P _{tot}	total power dissipation	$T_{amb} = -40 \ ^{\circ}C$ to +85 $^{\circ}C$			
		DIP16 package	<u>[1]</u> _	750	mW
		SO16 package	[2] _	500	mW
Р	power dissipation	per output	-	100	mW

[1] For DIP16 package: P_{tot} derates linearly with 12 mW/K above 70 °C.

[2] For SO16 package: P_{tot} derates linearly with 8 mW/K above 70 °C.

9. Recommended operating conditions

Table 5.	Recommended operating conditions								
Symbol	Parameter	Conditions	Min	Тур	Max	Unit			
V _{DD}	supply voltage		3	-	15	V			
VI	input voltage		0	-	V_{DD}	V			
T _{amb}	ambient temperature	in free air	-40	-	+85	°C			
$\Delta t/\Delta V$	input transition rise and fall rate	$V_{DD} = 5 V$	-	-	3.75	μs/V			
		V _{DD} = 10 V	-	-	0.5	μs/V			
		V _{DD} = 15 V	-	-	0.08	μs/V			

10. Static characteristics

Table 6. Static characteristics

 $V_{SS} = 0 V$; $V_{I} = V_{SS}$ or V_{DD} ; unless otherwise specified.

Symbol	Parameter	Conditions	V _{DD}	T _{amb} =	−40 °C	T _{amb} =	+25 °C	T _{amb} =	+85 °C	Unit
				Min	Max	Min	Мах	Min	Max	
VIH	HIGH-level	I _O < 1 μΑ	5 V	3.5	-	3.5	-	3.5	-	V
	input voltage		10 V	7.0	-	7.0	-	7.0	-	V
			15 V	11.0	-	11.0	-	11.0	-	V
VIL	LOW-level	$ I_0 < 1 \ \mu A$	5 V	-	1.5	-	1.5	-	1.5	V
	input voltage		10 V	-	3.0	-	3.0	-	3.0	V
			15 V	-	4.0	-	4.0	-	4.0	V
V _{OH}	HIGH-level output voltage	I _O < 1 μA	5 V	4.95	-	4.95	-	4.95	-	V
			10 V	9.95	-	9.95	-	9.95	-	V
			15 V	14.95	-	14.95	-	14.95	-	V
V _{OL} LOW-level output vo	LOW-level output voltage	I _O < 1 μΑ	5 V	-	0.05	-	0.05	-	0.05	V
			10 V	-	0.05	-	0.05	-	0.05	V
			15 V	-	0.05	-	0.05	-	0.05	V
I _{OH}	HIGH-level output current	V _O = 2.5 V	5 V	-1.7	-	-1.4	-	-1.1	-	mA
		$V_0 = 4.6 V$	5 V	-0.52	-	-0.44	-	-0.36	-	mA
		V _O = 9.5 V	10 V	-1.3	-	-1.1	-	-0.9	-	mA
		V _O = 13.5 V	15 V	-3.6	-	-3.0	-	-2.4	-	mA
l _{OL}	LOW-level output current	$V_0 = 0.4 V$	5 V	0.52	-	0.44	-	0.36	-	mA
		$V_{0} = 0.5 V$	10 V	1.3	-	1.1	-	0.9	-	mA
		V _O = 1.5 V	15 V	3.6	-	3.0	-	2.4	-	mA
l _l	input leakage current		15 V	-	±0.3	-	±0.3	-	±1.0	μΑ
I _{DD}	supply current	all valid input	5 V	-	20	-	20	-	150	μΑ
		combinations;	10 V	-	40	-	40	-	300	μΑ
		I _O = 0 A	15 V	-	80	-	80	-	600	μΑ
CI	input capacitance		-	-	-	-	7.5	-	-	pF

Dual monostable multivibrator

11. Dynamic characteristics

Table 7. Dynamic characteristics

 $V_{SS} = 0 V$; $T_{amb} = 25 \circ C$; for waveforms see Figure 6; for test circuit see Figure 7; unless otherwise specified.

Symbol	Parameter	Conditions	V_{DD}	Extrapolation formula ^[1]	Min	Тур	Max	Unit
t _{PHL}	HIGH to LOW	$n\overline{A}$ or nB to $n\overline{Q}$;	5 V	113 ns + (0.55 ns/pF) C _L	-	140	280	ns
propagation delay	see Figure 5	10 V	39 ns + (0.23 ns/pF) C _L	-	50	100	ns	
			15 V	27 ns + (0.16 ns/pF) C _L	-	35	70	ns
		$n\overline{CD}$ to nQ ;	5 V	78 ns + (0.55 ns/pF) C _L	-	105	210	ns
		see Figure 5	10 V	29 ns + (0.23 ns/pF) C _L	-	40	85	ns
			15 V	22 ns + (0.16 ns/pF) C _L	-	30	60	ns
t _{PLH}	LOW to HIGH	$n\overline{A}$ or nB to nQ ;	5 V	128 ns + (0.55 ns/pF) C _L	-	155	305	ns
	propagation delay	see Figure 5	10 V	49 ns + (0.23 ns/pF) C _L	-	60	115	ns
			15 V	32 ns + (0.16 ns/pF) C _L	-	40	80	ns
		$n\overline{CD}$ to $n\overline{Q}$;	5 V	93 ns + (0.55 ns/pF) C _L	-	120	240	ns
		see Figure 5	10 V	39 ns + (0.23 ns/pF) C _L	-	50	105	ns
			15 V	27 ns + (0.16 ns/pF) C _L	-	35	70	ns
t _t	transition time	nQ, nQ;	5 V	[2] 10 ns + (1.00 ns/pF) C _L	-	60	120	ns
		see <u>Figure 5</u>	10 V	9 ns + (0.42 ns/pF) C _L	-	30	60	ns
			15 V	6 ns + (0.28 ns/pF) C _L	-	20	40	ns
t _{rec} recovery time	$n\overline{CD}$ to $n\overline{A}$ or nB ;	5 V		0	-75	-	ns	
		see <u>Figure 6</u>	10 V		0	-30	-	ns
			15 V		0	-25	-	ns
t _{su}	set-up time	nCD to nA or nB; see <u>Figure 6</u>	5 V		0	-105	-	ns
			10 V		0	-40	-	ns
			15 V		0	-25	-	ns
t _W	pulse width	nĀ LOW;	5 V		50	25	-	ns
		minimum width;	10 V		30	15	-	ns
		see <u>Figure 6</u>	15 V		20	10	-	ns
		nB HIGH;	5 V		50	25	-	ns
		minimum width;	10 V		30	15	-	ns
		see Figure 6	15 V		20	10	-	ns
		nCD LOW;	5 V		60	30	-	ns
		minimum width; see Figure 6	10 V		35	15	-	ns
	see <u>Figure o</u>	15 V		25	10	-	ns	
		nQ or $n\overline{Q}$;	5 V	[3]	-	235	-	ns
		$R_{EXT} = 5 k\Omega;$	10 V		-	155	-	ns
		C _{EXT} = 15 pF; see Figure 6	15 V		-	140	-	ns
		nQ or $n\overline{Q}$;	5 V	[4]	-	5.45	-	μs
		R _{EXT} = 10 kΩ; C _{EXT} = 1 nF;	10 V		-	4.95	-	μs
		$C_{EXT} = 1 \text{ fift},$ see Figure 6	15 V		-	4.85	-	μs

Symbol	Parameter	Conditions	V_{DD}	Extrapolation formula ^[1]	Min	Тур	Мах	Unit
∆t _W	pulse width	nQ output variation	5 V	[5]	-	±3	-	%
	variation	over temperature	10 V		-	±2	-	%
		range	15 V		-	±2	-	%
	nQ output variation	5 V		-	±2	-	%	
	over voltage range	10 V		-	±1	-	%	
	$V_{DD} \pm 5$ %	15 V		-	±1	-	%	
R _{EXT}	external timing	see Figure 4	5 V		5	-	2	MΩ
	resistor		10 V		5	-	2	MΩ
			15 V		5	-	2	MΩ
C _{EXT} external timing capacitor	ng see <u>Figure 4</u>	5 V		no lim	its			
		10 V		no lim	its			
			15 V		no lim	its		

Table 7. Dynamic characteristics ... continued Very = 0.14 T = 25 °C: for weighter and Times

6: for test circuit see Figure 7: unless otherwise specified

[1] The typical values of the propagation delay and transition times are calculated from the extrapolation formulas shown (CL in pF).

[2] t_t is the same as t_{THL} and t_{TLH} .

[3] For other R_{EXT}, C_{EXT} combinations and C_{EXT} < 0.01 μ F see Figure 4.

[4] For other R_{EXT}, C_{EXT} combinations and C_{EXT} > 0.01 μ F use formula t_W = K × R_{EXT} × C_{EXT}. where: t_W = output pulse width (s); R_{EXT} = external timing resistor (Ω); C_{EXT} = external timing capacitor (F); K = 0.42 for V_{DD} = 5 V; K = 0.32 for $V_{DD} = 10$ V; K=0.30 for V_{DD} = 15 V.

[5] $T_{amb} = -40 \degree C$ to +85 $\degree C$; Δt_W is referenced to t_W at $T_{amb} = 25 \degree C$.

Table 8. Dynamic power dissipation P_D

 P_D can be calculated from the formulas shown. $V_{SS} = 0$ V; $t_f = t_f \le 20$ ns; $T_{amb} = 25 \degree C$.

Dealline	r_{3} be calculated from the formulae choice r_{33} = 0, r_{1} = r_{1} = 20 for r_{1} = r_{2} = 0.						
Symbol	Parameter	V _{DD}	Typical formula for P_D (μ W)	where:			
PD			$P_D = 4000 \times f_i + \Sigma (f_o \times C_L) \times V_DD^2$	f _i = input frequency in MHz;			
dissi	dissipation	10 V	$P_D = 20000 \times f_i + \Sigma(f_o \times C_L) \times V_DD{}^2$	$f_o = output frequency in MHz;$			
		15 V	$P_D = 59000 \times f_i + \Sigma(f_o \times C_L) \times V_DD^2$	C_L = output load capacitance in pF;			
				V _{DD} = supply voltage in V;			
				$\Sigma(f_o \times C_L)$ = sum of the outputs.			

HEF4528B 6

NXP Semiconductors

HEF4528B

Dual monostable multivibrator

Dual monostable multivibrator

12. Waveforms

Table 9. Measurement points

Supply voltage	Input	Output
V _{DD}	V _M	V _M
5 V to 15 V	0.5V _{DD}	0.5V _{DD}

HEF4528B_6

NXP Semiconductors

HEF4528B

Dual monostable multivibrator

Table 10. Test data

Supply voltage	Input		Load
V _{DD}	V _I t _r , t _f 0		CL
5 V to 15 V	V_{SS} or V_{DD}	≤ 20 ns	50 pF

13. Application information

An example of a HEF4528B application is:

• Non-retriggerable monostable multivibrator

Dual monostable multivibrator

14. Package outline

Fig 9. Package outline SOT38-4 (DIP16)

Dual monostable multivibrator

Fig 10. Package outline SOT109-1 (SO16)

Dual monostable multivibrator

15. Revision history

Table 11. Revision his	story								
Document ID	Release date	Data sheet status	Change notice	Supersedes					
HEF4528B_6	20091127	Product data sheet	-	HEF4528B_5					
Modifications:	Modifications: Section 9 "Recommended operating conditions": Δt/ΔV values updated.								
HEF4528B_5	20090813	Product data sheet	-	HEF4528B_4					
HEF4528B_4	20090209	Product data sheet	-	HEF4528B_CNV_3					
HEF4528B_CNV_3	19950101	Product specification	-	HEF4528B_CNV_2					
HEF4528B_CNV_2	19950101	Product specification	-	-					

16. Legal information

16.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

16.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

16.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

17. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Dual monostable multivibrator

18. Contents

1	General description 1
2	Features 1
3	Applications 1
4	Ordering information 1
5	Functional diagram 2
6	Pinning information 3
6.1 6.2	Pinning 3 Pin description 3
7	Functional description4
8	Limiting values 4
9	Recommended operating conditions 5
10	Static characteristics 5
11	Dynamic characteristics 6
12	Waveforms 9
13	Application information 11
14	Package outline 12
15	Revision history 14
16	Legal information 15
16.1	Data sheet status 15
16.2	Definitions 15
16.3	Disclaimers
16.4	Trademarks 15
17	Contact information 15
18	Contents 16

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2009.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 27 November 2009 Document identifier: HEF4528B_6

